AI’s Role in Revolutionizing Talent Acquisition and Retention

This article originally appeared in Forbes.

As corporations grapple with the challenging task of attracting and retaining highly skilled talent in an intensely competitive market, AI-assisted HR tools are creating a new paradigm. Of course, these innovations can create potential ethical issues during the recruitment and internal mobility processes. Here are things that HR leaders must consider when weighing the pros and cons of implementing these technologies.

AI In Talent Acquisition

Traditional recruitment methods, often laborious and time-consuming, require HR leaders to sift through hundreds of résumés for every open position. These processes can potentially cost thousands of dollars if a position remains unfilled, even reaching six figures when considering senior or technical roles. Furthermore, hastily rushing the recruitment process can lead to improper fitting, resulting in higher turnover rates. With AI-powered platforms, HR leaders can streamline their processes by ensuring a more accurate selection of candidates and accelerating the hiring timeline.

Algorithms can process vast amounts of data swiftly, eliminating the painstaking manual review of résumés. By leveraging natural language processing and machine learning, AI-powered tools analyze and use skills extraction to identify the most relevant skills for a given role. These systems go beyond simple keyword matching; they can apply context to infer skills that aren’t explicitly mentioned in résumés. Semantic skills extraction reduces missed opportunities that occur using only keyword search, creating a selection process that’s more comprehensive for recruiters and more fair to candidates.

At a time when enterprises are rapidly transitioning to skills-based models, introducing an AI-powered platform can help HR leaders quickly assess and rank internal and external candidates based on their skills and capabilities. This not only saves time by revealing best-fit candidates faster but also goes even further by enabling role matching.

Finally, recruitment professionals can use AI to enhance the candidate experience with personalized interactions. Tools like chatbots and virtual assistants provide real-time updates on application status and offer tailored job recommendations, reducing candidate effort and time.

AI In Employee Retention

High employee turnover can significantly impact a company’s bottom line. A survey showed that 63% of employees changing jobs cited lack of advancement opportunities as a main factor. In this context, AI can help HR leaders understand their employees’ needs and aspirations better, then use that knowledge to enhance their journey within the organization.

With AI platforms, talent management teams can analyze large volumes of data to gain insights into factors contributing to employee attrition, such as job satisfaction, work-life balance and career growth opportunities. This personalized insight, regardless of workforce size, allows HR professionals to identify and address at-risk employees’ concerns proactively. For example, an employee who’s remained in one position for a long time may have unrealized potential to succeed on another team in the company. A proactive HR leader will capitalize on AI-driven insights to spot that opportunity and present it to the employee, offering a new challenge and possibly keeping them from looking elsewhere.

Performance management and feedback systems receive support from AI technologies that provide objective evaluations of employee performance. This can help HR leaders and people managers provide personalized coaching and development plans, enhancing overall job satisfaction for employees.

Ethical Concerns And Potential Biases

While AI technology offers numerous advantages, it does raise ethical concerns that HR leaders should stay aware of. These systems can unintentionally perpetuate biases and stereotypes present in historical data. In 2018, Amazon came under fire when it was revealed that an AI-based recruitment system discriminated against women when hiring for technical roles. The platform sought top candidates by positions on their résumés, and considering women had held only about 24% of STEM jobs in the U.S., the majority of résumés fed into the system were from men. As a result, the algorithm developed male preference and gradually deprioritized résumés from women.

Clearly, unintended bias like this can have devastating consequences for an enterprise on several fronts beyond skewed workforce growth. The ripples can be felt throughout brand reputation, customer backlash, candidate trust and more.

Such dangers have prompted an increase in regulation around responsible AI, including Local Law 144 in New York City. The new law requires independent audits of what it categorizes as automated employment decision tools (AEDT) used in hiring within, or from within, New York City—an expansive reach, given the city is a global business hub. While it can be argued that AI-driven platforms don’t automate decisions but rather inform humans’ decision-making, the systems present within an organization’s HR tech stack are included in the regulations.

To remain compliant, HR leaders must ensure diverse and representative training data for any AI systems they implement. Additionally, systems should comply with the five pillars of responsible AI: explainability and interpretability; bias mitigation and fairness algorithms; data robustness and granularity; data quality and rights; and accountability through regular audits and monitoring of the AI’s decision-making process.

HR innovators looking to employ responsible AI-based systems will benefit from first researching available platforms and asking potential vendors the important questions: Is your solution transparent? Can you easily explain how its algorithms work? What bias mitigation is in place? What client onboarding experience can we expect and what training is included?

AI Is Here To Stay

Artificial intelligence is undeniably transforming the world of HR, especially in talent acquisition and retention. The benefits of AI, like streamlined recruitment processes and improved employee engagement and satisfaction, are significant for organizations. By employing ethical, responsible AI-driven systems, enterprises can future-proof their workforce and reap immense benefits.

The Responsible HR Forum Presented by retrain.ai

The conversation around responsible HR innovation and best practices has been growing steadily as enterprises look to ethically pursue equitable, diverse workforce growth. Its importance has further increased given the NYC AI Audit law taking effect in July 2023. 

Up to this point, much of the conversation has taken place disparately, with HR leaders, technologists and regulators operating in silos.

We are thrilled to announce that this May, we are hosting a first-of-its-kind event focused entirely on Responsible HR. We’re bringing together key stakeholders to form a community of HR leaders, technologists, educators, advocates and regulators to collaborate on our collective journey toward designing and adopting Responsible HR practices. 

The Responsible HR Forum

presented by retrain.ai

May 17, 2023

New York City

This full day of exploration and discussion will be kicked off by our esteemed keynote speaker, Commissioner Keith Sonderling of the Equal Employment Opportunity Commission (EEOC).

Keith Sonderling, Vice Chair and Commissioner, EEOC

Commissioner Sonderling will discuss increasing Responsible AI regulation as well as what’s on the legislative horizon for enterprises and HR leaders implementing AI-based tech solutions. 

You’re invited to join us as we bring together CHROs, regulators, legal experts, analysts, academics, nonprofits and more for a day of invigorating discussions, shared ideas and key strategies to prepare for this next wave in the future of work.

 

retrain.ai is a talent intelligence platform designed to help enterprises hire, retain, and develop their workforce, intelligently. Leveraging Responsible AI and the industry’s largest skills taxonomy, enterprises unlock talent insights and optimize their workforce effectively to lower attrition, win the war for talent and the great resignation in one, data-driven solution. To see it in action, request a demo

White Box vs. Black Box HR Solutions: What’s the Difference

As AI becomes increasingly embedded in HR systems, enterprise leaders face growing accountability from regulators, their C-suite, applicants, and more to ensure their solutions use ethical, responsible systems to mitigate unintended bias. As a result, Responsible AI is becoming a business mandate, with increasing momentum around laws requiring audits to ensure all benchmarks of Responsible AI are in place.  

One key component of Responsible AI is explainability. Users of an AI-based system should understand how their AI gathers, organizes and interprets data, as well as how the platform produces outcomes.

White box = Explainability

The level of transparency needed to fully explain an AI solution can only be found in what is referred to as a white box solution. With this approach, a full end-to-end view of an AI system’s functionality enables system users to see the what of the system–its data output–while also being able to ask the why–the methodology behind the results.

Such interpretability also allows data scientists and analysts to test the design and internal structure of an AI system in order to authenticate the input and outflow, gauge for errors or inconsistencies, and optimize functionalities accordingly.

What White box Means for HR Leaders

A white box AI solution empowers users to question processes and challenge results, which is especially critical when using such technology within HR functions. Armed with a thorough understanding of their AI solution, an HR leader can be sure their system is performing critical functions, such as mitigating bias risk within its machine learning models. Assured of such mitigation, the organization can stand behind hiring practices that fully support their diversity and inclusion goals.

Black box = Blind Trust

Conversely, there are AI systems for which explanations are too difficult to understand–or aren’t available at all. These are often referred to as black box solutions. In certain settings, black box AI can be useful. The algorithmic complexities necessary in fraud prevention systems, for example, are not explainable in simple terms. 

But within HR functions, a black box system doesn’t allow users to understand how the AI arrives at its conclusions around hiring decision support. As such, there is no visibility to detect errors within the processes, including the presence of possible bias permeating the algorithms.

What Black box Means for HR Leaders

For these reasons, black box solutions represent a significant risk to HR innovators. In the larger sense, they demand a significant level of blind trust. More specifically, by masking information that can derail DEI hiring practices, they render an AI  solution non-compliant in the face of increasing Responsible AI regulation.

retrain.ai and Responsible AI

In providing end-to-end transparency for platform users, retrain.ai is a white box solution. In choosing this methodology, retrain.ai supports the rights of enterprises to know and understand how their HR platforms deliver critical information.

As part of our larger commitment to leading the forefront of Responsible AI innovation in the HR Tech space, retrain.ai works with the Responsible Artificial Intelligence Institute (RAII), a leading nonprofit organization building tangible governance tools for trustworthy, safe, and fair artificial intelligence. To see the retrain.ai difference book a demo

 

 

retrain.ai is a talent intelligence platform designed to help enterprises hire, retain, and develop their workforce, intelligently. Leveraging Responsible AI and the industry’s largest skills taxonomy, enterprises unlock talent insights and optimize their workforce effectively to lower attrition, win the war for talent and the great resignation in one, data-driven solution. To see it in action, request a demo

Disruption That’s Here to Stay: Skills Language & Talent Intelligence 

Across industries, the state of workforce management has been rocked by perpetual change over the last three years. If one truth has arisen from trends like the war for talent and the great resignation, it’s this: People are an organization’s greatest asset. 

Without the right people in best-fit roles, businesses risk obsolescence in a competitive landscape driven by new and evolving in-demand skills. So real is the challenge, a majority of CEOs have reported that the ability to hire and retain skilled talent is their most critical barrier to achieving growth.

Unified Language: The Importance of Skills

For HR leaders, the new world of work demands that talent have the specific capabilities needed in order to succeed in their role. Gone are the days of impressive titles or degrees; in-demand skills are what make or break recruiting efforts. Internal mobility is forever changed as well, with the upward professional ladder climb giving way to a more agile rock wall where skills-based opportunities can come from any direction in a myriad of forms. Roles, projects, gigs, mentorships, learning pathways–all are integral parts of today’s professional development spectrum.

AI: The Rise of Talent Intelligence

To break down every open role and job description into skills needed, or to scan every CV into skills language, would take a traditional HR team more hours than are even close to possible. Yet having a clear understanding of what skills they already have in their workforce, where the skill gaps are located, and which internal or external candidates can bring those skills to the table is critical to future-proofing their organization.

To both expedite the process, and to do so with granular precision, HR innovators are increasingly implementing talent intelligence solutions

What is Talent Intelligence?

Talent intelligence is AI-driven technology that unifies, organizes and interprets a company’s internal data, and combines it with external data on market trends,  emerging skills and labor statistics  in a way that informs and empowers HR leaders to make better workforce planning business decisions. Similar to the groundbreaking capabilities demonstrated by ChatGPT, talent intelligence uses generative AI with similar language processing technology, but expands on the model to provide a fully explainable enterprise-level solution. Built on ethical, Responsible AI means such solutions actively mitigate the risk of unintended bias seeping into machine learning cycles, which can derail DEI hiring practices. 

AI-driven Talent Intelligence and Skills Matching

Using talent intelligence to synthesize the combination of AI capabilities and skills-focused workforce development empowers HR leaders to make faster, better business decisions.

Skills Architecture

Making the best decisions around hiring and internal mobility means HR leaders need to have a clear, granular view of what capabilities their employees have, where the skills gaps lie, and how to future-proof their workforce through developing talent.

Using AI-driven talent intelligence to skills-map an enterprise workforce, HRs can establish unified skills language and an agreed-upon skills framework. Matching it with data insights, they can then align talent decisions with organizational goals.

Talent Acquisition

It’s estimated that in the U.S., it takes more than a month to fill an open position–and that on average, an HR leader must review more than 150 CVs for a single role. Multiply that across a large hiring initiative and there’s a very real cost to an enterprise, including recruiting expenses, time invested by departmental leaders and managers in supporting the hiring process, and the productivity disruption of a prolonged vacancy.

AI-driven talent intelligence helps HRs zero in on best-fit candidates more quickly by analyzing applicants at an atomic level, breaking down their talents into individual skills. Matching applicants with open opportunities, roles or projects based solely on skills means HR leaders can link candidates to best-fit roles with room to grow; and they support DEI goals by eliminating demographic or other information that can introduce unintended bias into the equation.

Talent Management 

As millions of workers quit their jobs during the Great Resignation, one reason continually showed up in the research: Lack of opportunity for advancement. Put simply, at a time when there are more open roles than there are candidates going after them, HR leaders must strategize how to provide employees with a vision for future opportunities that will utilize, challenge and develop a worker’s skills.

AI-driven talent intelligence gives HRs a watchtower view of their workforce, including a granular understanding of employees’ strengths, skills gaps, potential capabilities and hidden talents. Fueled by these insights, HR leaders can provide their talent with personalized career pathing, internal mobility opportunities including roles, projects, gigs and mentorships–providing the kind of positive, proactive employee engagement that’s more likely to retain valuable talent. 

 

retrain.ai is a talent intelligence platform designed to help enterprises hire, retain, and develop their workforce, intelligently. Leveraging Responsible AI and the industry’s largest skills taxonomy, enterprises unlock talent insights and optimize their workforce effectively to lower attrition, win the war for talent and the great resignation in one, data-driven solution. To see it in action, request a demo

VIDCAST: Keep Your Best People Longer with Opportunities to Thrive

Of the millions of workers who quit their jobs over the last two years during the Great Resignation, many cited lack of opportunity for advancement as a major factor. Employees saw investment in their professional development as validation that their contributions were valued and rewarded; its absence sent the opposite message.

Today’s HR leaders must strategize how to hang on to their best-fit hires so they become long-term employees. Much of this comes down to providing a vision for future opportunities in the form of roles, projects and gigs that will utilize, challenge and develop a worker’s skills.

In this session, retrain.ai Co-founder and CEO Dr. Shay David and Chief Research Officer Ben Eubanks of Lighthouse Research discuss how organizations can build a mutually beneficial path forward for valued talent. Their conversation covers:

  • How HR tech can counter today’s quit rates 
  • The connection between internal opportunities and worker retention
  • What we can learn from Great Resignation data
  • The DRIP Problem: Data Rich, Information Poor
  • Implications of the new employer-employee dynamic
  • How AI enhances the human experience at work
  • The importance of Responsible AI and explainability
  • Tips for HR leaders new to using AI-driven tech
  • Talent scarcity as a business problem, not just an HR problem
  • How HRs and hiring managers can align to optimize Responsible AI solutions